当前位置: 首页 > news >正文

营销型网站建设的利与弊/网站秒收录

营销型网站建设的利与弊,网站秒收录,浙江建筑培训网,wordpress 集赞功能💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢…

💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢迎在文章下方留下你的评论和反馈。我期待着与你分享知识、互相学习和建立一个积极的社区。谢谢你的光临,让我们一起踏上这个知识之旅!
请添加图片描述

文章目录

  • 🥦引言
  • 🥦前期的回顾与准备
  • 🥦代码实现
  • 🥦总结

🥦引言

在机器学习和深度学习领域,我们经常会面对具有多维特征输入的问题。这种情况出现在各种应用中,包括图像识别、自然语言处理、时间序列分析等。PyTorch是一个强大的深度学习框架,它提供了丰富的工具和库,可以帮助我们有效地处理这些多维特征输入数据。在本篇博客中,我们将探讨如何使用PyTorch来处理多维特征输入数据。

🥦前期的回顾与准备

这里我们采用一组预测糖尿病的数据集,如下图
在这里插入图片描述
这里的每一行代表一个样本,同样的,每一列代表什么呢,代表一个特征,如下图。所以糖尿病的预测由下面这八个特征共同进行决定
在这里插入图片描述
按照过去的逻辑回归,应该是下图所示的,因为这是单特征值
在这里插入图片描述
但是现在由单特征值已经转变为多特征值了,所以我们需要对每个特征值进行处理,如下图
在这里插入图片描述
中间的特征值与权重的点乘可以从矩阵的形式进行表现
在这里插入图片描述
因为逻辑回归所以还有套一个Sigmoid函数,通常情况下我们将函数内的整体成为z(i)
在这里插入图片描述

注意: Sigmoid函数是一个按向量方式实现的

下面我们从矩阵相乘的形式进行展示,说明可以将一组方程合并为矩阵运算,可以想象为拼接哈。这样的目的是转化为并行运算,从而实现更快的运行速度。
在这里插入图片描述
所以从代码的角度去修改,我们只需要改变一下维度就行了

class Model(torch.nn.Module):def __init__(self):super(Model, self).__init__()self.linear = torch.nn.Linear(8, 1) self.sigmoid = torch.nn.Sigmoid()def forward(self, x):x = self.sigmoid(self.linear(x)) return x
model = Model()

这里的输入维度设置为8,就像上图中展示的x一样是N×8形式的矩阵,而 y ^ \hat{y} y^是一个N×1的矩阵。
这里我们将矩阵看做是一个空间变换的函数

我们可以从下图很好的展示多层神经网络的变换
在这里插入图片描述

从一开始的属于8维变为输出6维,再从输入的6维变为输出的4维,最后从输入的4维变为输出的1维。

如果从代码的角度去写,可以从下面的代码进行实现

class Model(torch.nn.Module):def __init__(self):super(Model, self).__init__()self.linear1 = torch.nn.Linear(8, 6) self.linear2 = torch.nn.Linear(6, 4) self.linear3 = torch.nn.Linear(4, 1) self.sigmoid = torch.nn.Sigmoid()def forward(self, x):x = self.sigmoid(self.linear1(x)) x = self.sigmoid(self.linear2(x)) x = self.sigmoid(self.linear3(x)) return x
model = Model()

这里我说明一下下面这条语句

  • self.sigmoid = torch.nn.Sigmoid():这一行创建了一个 Sigmoid 激活函数的实例,用于在神经网络的正向传播中引入非线性。

后面的前向计算就是一层的输出是另一层输入进行传,最后将 y ^ \hat{y} y^返回


同时我们的损失函数也没有变化,更新函数也没有变化,采用交叉熵和梯度下降
在这里插入图片描述

刘二大人这里没有使用Mini-Batch进行批量,后续的学习应该会更新
在这里插入图片描述

🥦代码实现

import torch
import torch.nn as nn
import torch.optim as optim
from sklearn import datasets
from sklearn.model_selection import train_test_split
import numpy as np# 载入Diabetes数据集
diabetes = datasets.load_diabetes()# 将数据集拆分为特征和目标
X = diabetes.data  # 特征
y = diabetes.target  # 目标# 数据预处理
X = (X - np.mean(X, axis=0)) / np.std(X, axis=0)  # 特征标准化# 拆分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 转换为PyTorch张量
X_train = torch.FloatTensor(X_train)
y_train = torch.FloatTensor(y_train).view(-1, 1)  # 将目标变量转换为列向量
X_test = torch.FloatTensor(X_test)
y_test = torch.FloatTensor(y_test).view(-1, 1)# 构建包含多个线性层的神经网络模型
class DiabetesModel(nn.Module):def __init__(self, input_size):super(DiabetesModel, self).__init__()self.fc1 = nn.Linear(input_size, 64)  # 第一个线性层self.fc2 = nn.Linear(64, 32)  # 第二个线性层self.fc3 = nn.Linear(32, 1)  # 最终输出线性层def forward(self, x):x = torch.relu(self.fc1(x))  # ReLU激活函数x = torch.relu(self.fc2(x))x = self.fc3(x)return x# 初始化模型
input_size = X_train.shape[1]
model = DiabetesModel(input_size)# 定义损失函数和优化器
criterion = nn.MSELoss()  # 均方误差损失
optimizer = optim.SGD(model.parameters(), lr=0.01)# 训练模型
num_epochs = 1000
for epoch in range(num_epochs):# 前向传播outputs = model(X_train)loss = criterion(outputs, y_train)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()if (epoch + 1) % 100 == 0:print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')# 在测试集上进行预测
model.eval()
with torch.no_grad():y_pred = model(X_test)# 计算性能指标
mse = nn.MSELoss()(y_pred, y_test)
print(f"均方误差 (MSE): {mse.item():.4f}")

运行结果如下
在这里插入图片描述

感兴趣的同学可以使用不同的激活函数一一测试一下

比如我使用tanh函数测试后得到的均方误差就小了许多
在这里插入图片描述

此链接是GitHub上的大佬做的可视化函数https://dashee87.github.io/deep%20learning/visualising-activation-functions-in-neural-networks/

🥦总结

这就是使用PyTorch处理多维特征输入的基本流程。当然,实际应用中,你可能需要更复杂的神经网络结构,更大的数据集,以及更多的调优和正则化技巧。但这个指南可以帮助你入门如何处理多维特征输入的问题,并利用PyTorch构建强大的深度学习模型。希望这篇博客对你有所帮助!

请添加图片描述

挑战与创造都是很痛苦的,但是很充实。

http://www.whsansanxincailiao.cn/news/30244476.html

相关文章:

  • 琼海做球网站/seo优化中以下说法正确的是
  • 鄂州网站建设企业推广/制作一个网站需要多少费用
  • 鹤壁市做网站/爱上链外链购买平台
  • 去哪个网站可以接单做ps等等/百度广告推广怎么做
  • 怎么利用网站上的图片/360优化大师官方版
  • 网站外包后百度降权/创建网址快捷方式
  • 做三年网站需要多少钱/青岛seo网站排名
  • 郑州富士康事件真相/系统优化的例子
  • 随州网站制作/如何在百度上发自己的广告?
  • 手机网站页面设计/长沙网站推广排名
  • 苏州做网站多少钱/产品怎么做推广和宣传
  • phpstorm/优化课程
  • 网站建设推广信息/郑州seo询搜点网络效果佳
  • 做网站需要实名认证吗/手机百度搜索引擎
  • 免费动画制作网站/谷歌广告开户
  • 做网站什么科目/十大搜索引擎
  • 做网站 做好把我踢开/微信软文模板
  • 怎么样自己做网站赚钱年入40万/网上推广平台
  • 做一份seo网站诊断/中国突然宣布一重磅消息
  • 上孩做网站/编程培训机构排名前十
  • 一级a做爰片免费网站 新闻/接单平台app
  • 怎么给网站做域名重定向/大数据营销系统怎么样
  • html用表格来做网站布局/余姚seo智能优化
  • 加强政府网站网络信息安全建设/seo优化推广软件
  • 门户cms系统/提升关键词排名seo软件
  • 东莞阳光网官方网站/武汉seo网站推广
  • 东方建设官方网站/seo页面内容优化
  • 动漫做3d游戏下载网站/百度推广需要什么条件
  • 小企业网站建设公司哪家好/热搜榜百度一下你就知道
  • 福安市代理做网站/网络舆情优化公司