当前位置: 首页 > news >正文

用ftp改网站电话怎么内页底部的没有变/谷歌收录查询工具

用ftp改网站电话怎么内页底部的没有变,谷歌收录查询工具,装修网站建设摘要,网站百度商桥有时我们希望在调用代理时能够对其进行配置。这包括配置使用哪个语言模型(LLM)等例子。下面我们将通过一个示例来详细介绍如何进行这样的配置。 在介绍 configurable 之前我们先介绍一下 Langchain 的 RunnableConfig。RunnableConfig是一个配置对象&…

有时我们希望在调用代理时能够对其进行配置。这包括配置使用哪个语言模型(LLM)等例子。下面我们将通过一个示例来详细介绍如何进行这样的配置。
在介绍 configurable 之前我们先介绍一下 Langchain 的 RunnableConfig。RunnableConfig是一个配置对象,用于自定义运行链(Chain)、工具(Tool)或任何可运行组件的行为。它允许我们控制执行过程中的各种参数和行为,是LangChain统一接口的重要组成部分。
它的主要功能和属性包括:

  1. callbacks: 允许你注册回调函数,在执行过程中的不同阶段触发,用于日志记录、监控或调试。
  2. tags:为执行添加标签,便于追踪和分类。
  3. metadata: 添加元数据信息,可用于记录额外的上下文信息。
  4. run_name:为当前运行指定一个名称,在追踪和日志中使用。
  5. configurable: 允许你在运行时动态配置组件。 运行时为此Runnable或子Runnable上通过.configurable_fields()或.configurable_alternatives()方法之前设为可配置的属性提供的值。查看.output_schema()获取已设为可配置的属性的描述。
  6. max_concurrency: 控制并发执行的最大数量。
  7. recursion_limit: 设置递归调用的最大次数。如果未提供,则默认为25。
  8. run_id: 这是调用的追踪器运行的唯一标识符。如果未提供,将生成一个新的UUID。

定义图

首先我们先创建一个非常简单的图:

import operator
from typing import Annotated, Sequence
from typing_extensions import TypedDictfrom langchain_openai import ChatOpenAI
from langchain_core.messages import BaseMessage, HumanMessagefrom langgraph.graph import END, StateGraph, STARTmodel = ChatOpenAI(model_name="gpt-4o-mini")class AgentState(TypedDict):messages: Annotated[Sequence[BaseMessage], operator.add]def _call_model(state):# state["messages"]response = model.invoke(state["messages"])return {"messages": [response]}# Define a new graph
builder = StateGraph(AgentState)
builder.add_node("model", _call_model)
builder.add_edge(START, "model")
builder.add_edge("model", END)graph = builder.compile()from IPython.display import display, Image
display(Image(graph.get_graph().draw_mermaid_png()))

得到如下图
在这里插入图片描述

configurable

然后为了扩展这个例子以允许用户从多个语言模型(LLM)中进行选择,并通过配置传递这些信息,我们可以将配置信息放在一个名为 configurable 的 key 内。这种方式可以确保配置信息与输入数据分离,不作为状态的一部分进行跟踪。

from langchain_openai import ChatOpenAI
from typing import Optional
from langchain_core.runnables.config import RunnableConfigopenai_model = ChatOpenAI(model_name="gpt-3.5-turbo")models = {"openai_old": model,"openai": openai_model,
}def _call_model(state: AgentState, config: RunnableConfig):# Access the config through the configurable keymodel_name = config["configurable"].get("model", "openai_old")model = models[model_name]response = model.invoke(state["messages"])return {"messages": [response]}# Define a new graph
builder = StateGraph(AgentState)
builder.add_node("model", _call_model)
builder.add_edge(START, "model")
builder.add_edge("model", END)graph = builder.compile()from IPython.display import display, Image
display(Image(graph.get_graph().draw_mermaid_png()))

然后我们调用这个选择特定配置的图,

graph.invoke({"messages": [HumanMessage(content="hi")]})

得到结果

{'messages': [HumanMessage(content='hi', additional_kwargs={}, response_metadata={}),AIMessage(content='Hello! How can I assist you today?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 9, 'prompt_tokens': 8, 'total_tokens': 17, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 0, 'rejected_prediction_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_b705f0c291', 'finish_reason': 'stop', 'logprobs': None}, id='run-78fbb4d3-e64e-41dc-871f-fe08e3317f07-0', usage_metadata={'input_tokens': 8, 'output_tokens': 9, 'total_tokens': 17, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 0}})]}

我们可以通过传入配置来调用它,以使其使用不同的模型。

config = {"configurable": {"model": "openai"}}
graph.invoke({"messages": [HumanMessage(content="hi")]}, config=config)

得到下面结果

{'messages': [HumanMessage(content='hi', additional_kwargs={}, response_metadata={}),AIMessage(content='Hello! How can I assist you today?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 9, 'prompt_tokens': 8, 'total_tokens': 17, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_0165350fbb', 'finish_reason': 'stop', 'logprobs': None}, id='run-1fe66150-1579-4bba-b35f-06c3f66cd2d2-0', usage_metadata={'input_tokens': 8, 'output_tokens': 9, 'total_tokens': 17, 'input_token_details': {}, 'output_token_details': {}})]}

我们还可以调整图形以进行更多配置!例如系统消息。
首先我们可以定义一个配置模式(config schema)来指定图的配置选项,配置模式有助于指明在可配置字典(configurable dict)中有哪些字段可用。

from langchain_core.messages import SystemMessageclass ConfigSchema(TypedDict):model: Optional[str]system_message: Optional[str]def _call_model(state: AgentState, config: RunnableConfig):# Access the config through the configurable keymodel_name = config["configurable"].get("model", "openai_old")model = models[model_name]messages = state["messages"]if "system_message" in config["configurable"]:messages = [SystemMessage(content=config["configurable"]["system_message"])] + messagesresponse = model.invoke(messages)return {"messages": [response]}# 定义一个新的图 —— 注意我们在这里传入了配置模式,但这一步并不是必需的
workflow = StateGraph(AgentState, ConfigSchema)
workflow.add_node("model", _call_model)
workflow.add_edge(START, "model")
workflow.add_edge("model", END)graph = workflow.compile()

得到下面结果:

graph.invoke({"messages": [HumanMessage(content="hi")]})
{'messages': [HumanMessage(content='hi', additional_kwargs={}, response_metadata={}),AIMessage(content='Hello!', additional_kwargs={}, response_metadata={'id': 'msg_01VgCANVHr14PsHJSXyKkLVh', 'model': 'claude-2.1', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 10, 'output_tokens': 6}}, id='run-f8c5f18c-be58-4e44-9a4e-d43692d7eed1-0', usage_metadata={'input_tokens': 10, 'output_tokens': 6, 'total_tokens': 16})]}
config = {"configurable": {"system_message": "用韩语回答"}}
graph.invoke({"messages": [HumanMessage(content="您好")]}, config=config)
{'messages': [HumanMessage(content='您好', additional_kwargs={}, response_metadata={}),AIMessage(content='안녕하세요! 어떻게 도와드릴까요?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 10, 'prompt_tokens': 16, 'total_tokens': 26, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 0, 'rejected_prediction_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_ded0d14823', 'finish_reason': 'stop', 'logprobs': None}, id='run-1046d220-3a32-4792-9665-0a14528f9d53-0', usage_metadata={'input_tokens': 16, 'output_tokens': 10, 'total_tokens': 26, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 0}})]}
http://www.whsansanxincailiao.cn/news/30333882.html

相关文章:

  • 包头外贸网站建设/广告投放数据分析
  • 网站建设便宜不可信/网络推广营销公司
  • 创业先做网站/坚持
  • 做网站如何赚流量钱/seo教学
  • 建设返利优惠券网站/谷歌seo引擎优化
  • 唯品会 只做特卖的网站/关键词搜索量查询工具
  • ps做的图片能做直接做网站吗/抖音搜索关键词排名
  • 网站开发junke100/网络服务主要包括什么
  • 深圳东莞的网站建设公司/搜索引擎优化大致包含哪些内容或环节
  • 网站开发用户登陆的安全/宁波seo整站优化软件
  • 电脑外设网站建设论文/百度怎么优化排名
  • 成都门户网站建设多少钱/站长工具是干嘛的
  • 营改增后网站建设发票税率多少钱/免费网络空间搜索引擎
  • 网站图片下载 代码/销售策略和营销策略
  • 院校建设网站群的原因/阿里云建站费用
  • 基本网站建设知识/市场推广seo职位描述
  • 中山网站建设案例/成品短视频app下载有哪些软件
  • 网站开发团队成员介绍/win7优化大师官网
  • 专业网页设计培训班价格/百度seo在线优化
  • 广州天河 网站建设/网络营销常用的工具和方法
  • 营销型网站建设教学/百度网页怎么制作
  • 高端网站定制设计公司/看片子用什么app免费苹果手机
  • 优秀网站制作实例展示/网站点击率查询
  • 做精神科医院网站费用/中国新冠一共死去的人数
  • 网站建设分金手指排名十三/搜索排名怎么做
  • 适合年轻人看的播放器/提供搜索引擎优化公司
  • 常州专业网站建设公司咨询/网络建站公司
  • 织梦文章类网站模板/东莞做网站最好的是哪家
  • 青岛做网站推广/skr搜索引擎入口
  • 如何建立动态网站/巨量引擎官网