制作个人网站步骤/新手学百度竞价要多久
搜索算法是计算机科学的核心,用于在数据集合中查找特定元素。从数据库查询到 AI 路径规划,其应用场景无所不在。Python 因其简洁语法和丰富库支持,成为实现搜索算法的理想工具。
python
# 通用搜索函数示例
def search(data, target):for item in data:if item == target:return Truereturn False
无序与有序搜索:策略的选择
无序搜索:简单直接的探索
顺序查找:逐个遍历元素,直到找到目标。适用于小规模或无序数据。
python
def linear_search(arr, target):for i in range(len(arr)):if arr[i] == target:return ireturn -1
有序搜索:利用秩序提升效率
二分查找:利用有序数组特性,每次将搜索范围减半。
python
def binary_search(arr, target):left, right = 0, len(arr)-1while left <= right:mid = (left + right) // 2if arr[mid] == target:return midelif arr[mid] < target:left = mid + 1else:right = mid - 1return -1
深度优先与广度优先搜索:探索的路径
深度优先搜索(DFS):递归与栈实现
递归版本:简洁但受限于递归深度
python
def dfs_recursive(graph, node, visited):if node not in visited:print(node)visited.add(node)for neighbor in graph[node]:dfs_recursive(graph, neighbor, visited)
迭代版本:显式使用栈结构
python
def dfs_iterative(graph, start):visited, stack = set(), [start]while stack:node = stack.pop()if node not in visited:print(node)visited.add(node)# 逆序入栈保证顺序stack.extend(reversed(graph[node]))
广度优先搜索(BFS):队列实现
python
from collections import dequedef bfs(graph, start):visited, queue = set(), deque([start])visited.add(start)while queue:node = queue.popleft()print(node)for neighbor in graph[node]:if neighbor not in visited:visited.add(neighbor)queue.append(neighbor)
二叉搜索树:高效查找的利器
结构定义与基本操作
python
class TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightclass BST:def __init__(self):self.root = Nonedef insert(self, val):if not self.root:self.root = TreeNode(val)else:self._insert_recursive(self.root, val)def _insert_recursive(self, node, val):if val < node.val:if node.left:self._insert_recursive(node.left, val)else:node.left = TreeNode(val)else:if node.right:self._insert_recursive(node.right, val)else:node.right = TreeNode(val)
查找与遍历实现
python
def search_bst(root, val):while root and root.val != val:root = root.left if val < root.val else root.rightreturn root# 中序遍历(递归)
def inorder_traversal(root):result = []def dfs(node):if node:dfs(node.left)result.append(node.val)dfs(node.right)dfs(root)return result# 层序遍历(BFS)
def level_order(root):if not root:return []queue, result = deque([root]), []while queue:level_size = len(queue)current_level = []for _ in range(level_size):node = queue.popleft()current_level.append(node.val)if node.left:queue.append(node.left)if node.right:queue.append(node.right)result.append(current_level)return result
搜索算法的 Python 实战
旋转数组搜索
python
def search_rotated(nums, target):left, right = 0, len(nums)-1while left <= right:mid = (left + right) // 2if nums[mid] == target:return mid# 左半部分有序if nums[left] <= nums[mid]:if nums[left] <= target < nums[mid]:right = mid - 1else:left = mid + 1# 右半部分有序else:if nums[mid] < target <= nums[right]:left = mid + 1else:right = mid - 1return -1
二叉搜索树专题
第 K 小元素(中序遍历特性)
python
def kth_smallest(root, k):stack = []while True:while root:stack.append(root)root = root.leftroot = stack.pop()k -= 1if k == 0:return root.valroot = root.right
对称二叉树(BFS 验证对称性)
python
def is_symmetric(root):if not root:return Truequeue = deque([(root.left, root.right)])while queue:left, right = queue.popleft()if not left and not right:continueif not left or not right or left.val != right.val:return Falsequeue.append((left.left, right.right))queue.append((left.right, right.left))return True
性能优化与总结
通过 Python 实现可以发现:
- 有序数据结构(如排序数组、二叉搜索树)能显著提升查找效率
- 递归实现简洁但需注意栈溢出风险,迭代实现更可控
- BFS 适合求最短路径,DFS 适合内存敏感场景
- 二叉搜索树的中序遍历天然有序,可用于快速排序等衍生问题
建议根据具体场景选择实现方式,结合 Python 的生成器、装饰器等特性,可以进一步优化代码的可读性和性能。