当前位置: 首页 > news >正文

网页设计实训总结800字/优化设计数学

网页设计实训总结800字,优化设计数学,建筑材料网站建设,15年做哪些网站能致富前言:本博客汇总当前AI生成图像检测领域用到的数据集及相关链接。 ⚠️:除标注「未公开」数据集,其余数据集均已开源。 目录 2020202220232024 2020 CNNSpot https://github.com/peterwang512/CNNDetection Testset: The zip file contains …

前言:本博客汇总当前AI生成图像检测领域用到的数据集及相关链接。
⚠️:除标注「未公开」数据集,其余数据集均已开源。

目录

  • 2020
  • 2022
  • 2023
  • 2024

2020

  • CNNSpot
    https://github.com/peterwang512/CNNDetection
    Testset: The zip file contains images from 13 CNN-based synthesis algorithms, including the 12 testsets from the paper and images downloaded from whichfaceisreal.com. Images from each algorithm are stored in a separate folder. In each category, real images are in the 0_real folder, and synthetic images are in the 1_fake folder.
    Note: ProGAN, StyleGAN, StyleGAN2, CycleGAN testset contains multiple classes, which are stored in separate subdirectories.
    Training set: The training set used in the paper can be downloaded here (Try alternative links 1,2 if the previous link does not work). All images are from LSUN or generated by ProGAN, and they are separated in 20 object categories. Similarly, in each category, real images are in the 0_real folder, and synthetic images are in the 1_fake folder.
    Validation set: The validation set consists of held-out ProGAN real and fake images, and can be downloaded here. The directory structure is identical to that of the training set.
    在这里插入图片描述

2022

  • IEEE VIP Cup(2022 IEEE Video and Image Processing Cup | Synthetic Image Detection Challenge)
    https://grip-unina.github.io/vipcup2022/

  • SAC
    https://github.com/JD-P/simulacra-aesthetic-captions
    数据集中图像命名,包含生成所需的提示词,如:0_An_artwork_of_a_broken_wine_bottle_in_the_medium_of_dry_pigments_1.png43044_…png
    此外,该数据集也被用于美学质量评价。


2023

  • DiffusionForensics
    https://github.com/ZhendongWang6/DIRE
    在这里插入图片描述

  • DMimageDetection
    https://github.com/grip-unina/DMimageDetection/tree/main/training_code
    https://luminohope.org/pub/publication/arxiv_diffusion_detection_2022/

  • GenImage
    https://github.com/GenImage-Dataset/GenImage
    We employ eight generative models for image generation, namely BigGAN [2], GLIDE [21], VQDM [8], Stable Diffusion V1.4 [25], Stable Diffusion V1.5 [25], ADM [5], Midjourney [20], and Wukong [35].
    在这里插入图片描述

  • Fake2M
    https://arxiv.org/pdf/2304.13023
    We constructed 3 training fake datasets with about 2M images, named Fake2M, and 11 validation fake datasets with about 257K images using different latest modern generative models, which contain the SOTA Diffusion models (Stable Diffusion [46], IF [4]), the SOTA GAN model (StyleGAN3 [31]), the SOTA autoregressive model (CogView2 [19]), and the SOTA generative model (Midjounrey [6]), as shown in Tab. 2. We describe the details of our datasets in the following subsections.
    在这里插入图片描述

  • TWIGMA
    https://yiqunchen.github.io/TWIGMA/index.html#dataset
    在这里插入图片描述

  • ArtiFact
    https://github.com/awsaf49/artifact
    To include a diverse collection of real images from multiple categories, including Human/Human Faces, Animal/Animal Faces, Places, Vehicles, Art, and many other real-life objects, the proposed dataset utilizes 8 sources [7], [14]–[16] that are carefully chosen. Additionally, to inject diversity in terms of generators, the proposed dataset synthesizes images from 25 distinct methods [7]–[9], [14]–[24]. Specifically, it includes 13 GANs, 7 Diffusion, and 5 other miscellaneous generators. On the other hand, in terms of syntheticity, there are 20 fully manipulating and 5 partially manipulating generators, thus providing a broad spectrum of diversity in terms of generators used. The distribution of real and fake data with different sources is shown in Fig.1 and Fig.2, respectively. The dataset contains a total of 2,496,738 images, comprising 964,989 real images and 1,531,749 fake images. The most frequently occurring categories in the dataset are Human/Human Faces, Animal/Animal Faces, Vehicles, Places, and Art.

13GANs: BigGAN, CycleGAN, Denoising Diffusion GAN, Diffusion GAN, FaceSynthetics, GANformer, GauGAN, ProGAN, ProjectedGAN, StarGAN, StyleGAN1, StyleGAN2, StyleGAN3
7DMs: DDPM, Glide, LaMa, Latent Diffusion, Stable Diffusion, Taming Transformer, VQDiffusion
5 Others: CIPS, Generative Inpainting, MAT, Palette, SFHQ
在这里插入图片描述

  • Synthbuster
    https://github.com/qbammey/polardiffshield
    在这里插入图片描述

  • UniversarialFakeDetect
    https://github.com/WisconsinAIVision/UniversalFakeDetect
    11GANs + 7 DMs + 1 其他

  • DiffusionDB
    https://github.com/poloclub/diffusiondb
    We construct DIFFUSIONDB (Fig. 2) by scraping user-generated images from the official Stable Diffusion Discord server. We choose Stable Diffusion as it is currently the only open-source large text-to-image generative model, and all generated images have a CC0 1.0 license that allows uses for any purpose

  • CiFAKE
    https://github.com/jordan-bird/CIFAKE-Real-and-AI-Generated-Synthetic-Images
    CIFAKE is a dataset that contains 60,000 synthetically-generated images and 60,000 real images (collected from CIFAR-10). For the FAKE images, we generated the equivalent of CIFAR-10 with Stable Diffusion version 1.4

  • LASTED
    https://github.com/HighwayWu/LASTED
    训练集生成模型:ProGAN,Lexica(Stable Diffusion)
    测试集:DreamBooth, Midjourney, NightCafe, StalbeAI, YiJian(蚁鉴)

  • DDDB 未公开
    https://arxiv.org/abs/2302.14475
    在这里插入图片描述

  • DeepArt 未公开
    https://export.arxiv.org/pdf/2312.10407
    在这里插入图片描述

  • DEFAKE 未公开
    https://github.com/zeyangsha/De-Fake
    20k real image for training + 10k real images for testing
    在这里插入图片描述


2024

  • COCOFake
    https://github.com/aimagelab/COCOFake
    COCOFake, containing about 1.2 million images generated from the original COCO image–caption pairs using two recent text-to-image diffusion models, namely Stable Diffusion v1.4 and v2.0.
    在这里插入图片描述
  • FOSID
    https://github.com/mever-team/fosid
    https://zenodo.org/records/13648239
    在这里插入图片描述
  • D^3
    https://aimagelab.ing.unimore.it/imagelab/page.asp?IdPage=57
    The Diffusion-generated Deepfake Detection (D3) Dataset is a comprehensive collection designed for large-scale deepfake detection. It includes 9.2 million generated images, created using four state-of-the-art diffusion model generators. Each image is generated based on realistic textual descriptions from the LAION-400M dataset.

We generate a comprehensive dataset that focuses on images generated by diffusion models and encompasses a collection of 9.2 million images produced by using four different generators.

Generators: Stable Diffusion 1.4, Stable Diffusion 2.1, Stable Diffusion XL, and DeepFloyd IF

Consequently, we generate and release the Diffusion-generated Deepfake Detection (D3 ) dataset containing 2.3 million records, each composed of a real image coming from LAION-400M [44] dataset and images from four generators, for a total of 9.2 million generated images. To verify the generation capabilities of deepfake detection methods to unseen generators, we also collect a challenging test set composed of 4.8k real images, each paired with 12 fake images generated by as many diffusion-based generators.

With the aim of increasing the variance of the dataset, images have been generated with different aspect ratios, i.e. 256x256, 512x512, 640×480, and 640×360. Moreover, to mimic the distribution of real images, we also employ a variety of encoding and compression methods (BMP, GIF, JPEG, TIFF, PNG). In particular, we closely follow the distribution of encoding methods of LAION itself, therefore favoring the presence of JPEG-encoded images.
在这里插入图片描述

  • ImagiNet
    https://github.com/delyan-boychev/imaginet
    https://huggingface.co/datasets/delyanboychev/imaginet
    To support the development of defensive methods, we introduce ImagiNet, a high-resolution and balanced dataset for synthetic image detection, designed to mitigate potential biases in existing resources. It contains 200k examples, spanning four content categories: photos, paintings, faces, and uncategorized. Synthetic images are produced with open-source and proprietary generators, whereas real counterparts of the same content type are collected from public datasets.
    在这里插入图片描述
    在这里插入图片描述

  • AntifakePrompt
    https://github.com/nctu-eva-lab/AntifakePrompt
    We conduct full-spectrum experiments on datasets from a diversity of 3 held-in and 20 held-out generative models, covering modern text-to-image generation, image editing and adversarial image attacks.
    Real datasets. We use Microsoft COCO (COCO) (Lin et al. 2014) dataset and Flickr30k (Young et al. 2014) dataset. In our work, we selected 90K images, with shorter sides greater than 224, from COCO dataset for the real images in the training dataset. Moreover, to assess the generalizability of our method over various real images, we additionally select 3K images from Flickr30k dataset to form a held-out testing dataset, adhering to the same criterion of image size. (93k)
    Fake image for training: 150k;for testing:3k*21 = 63k
    在这里插入图片描述

  • FakeBench
    https://arxiv.org/abs/2404.13306
    Regarding the genuine images, we sample 3,000 images from ImageNet [76] and DIV2K dataset [77].
    在这里插入图片描述
    在这里插入图片描述

  • COCOXGEN
    https://github.com/heikeadel/cocoxgen
    COCOXGEN(COCO Extended With Generated Images), which consists of real photos from the COCO dataset as well as images generated with SDXL and Fooocus using prompts of two standardized lengths.
    在这里插入图片描述

  • WildRF
    https://github.com/barcavia/RealTime-DeepfakeDetection-in-the-RealWorld
    We propose to improve deepfake evaluation and align it with real-world settings by introducing WildRF, a realistic benchmark consisting of images sourced from popular social platforms. Specifically, we manually collected real images and fake images using keywords and hashtags associated with the suitable content. Our protocol is to train on one platform (e.g., Reddit) and test the detector on real and fake images from other unseen platforms (e.g., Twitter and Facebook).
    在这里插入图片描述

  • WildFake
    https://arxiv.org/pdf/2402.11843
    在这里插入图片描述
    在这里插入图片描述

  • LSUNDB
    https://github.com/jonasricker/diffusion-model-deepfake-detection
    The main dataset used in this work is hosted on Zenodo. In total, the dataset contains 50k samples (256x256) for each of the following generators trained on LSUN Bedroom, divided into train, validation, and test set (39k/1k/10k).

  • DIF
    https://sergo2020.github.io/DIF/
    在这里插入图片描述

http://www.whsansanxincailiao.cn/news/31994490.html

相关文章:

  • 昆明网站建设方案外包/百度seo优化包含哪几项
  • 建设官方网站需要注意什么/上海快速优化排名
  • 黑龙江期刊网站制作/百度推广引流
  • 怎样进行网站建设/优化的近义词
  • 网站怎么做内链接地址/怎么在广告联盟接广告
  • 企业网站建设的报价/全网营销渠道
  • 哪里能给人做网站/seo技术培训教程
  • 网站banner图自适应/lol关键词查询
  • 宁波网站建设哪家快/360线上推广
  • 种子网站模板/汕头网站建设技术外包
  • 彩票网站的代理怎么做/seo搜索引擎优化推广专员
  • 衡水seo网站建设优化排名/营销软文范例
  • 门户网站建设案例/营销课程培训都有哪些
  • 政府网站建设及建议/外贸推广渠道有哪些
  • 可以免费做简历的网站/提高seo关键词排名
  • 抓取资源的网站怎么做/win10最强性能优化设置
  • 软件系统开发大概多少钱/淄博seo网站推广
  • 花钱让别人做的网站版权是谁的/网络推广平台软件
  • vs2012怎么做网站/网站优化策略
  • 广告策划书不包括什么内容/seo顾问张智伟
  • 媒体网站怎么申请/宁波seo推广优化哪家强
  • 佛山优化网站公司/谷歌 chrome 浏览器
  • 如何制作推广网站/内蒙古seo优化
  • 湖南网站seo/楚雄今日头条新闻
  • 政府网站建设年终总结/seo行业
  • 单页设计网站/微信seo是什么意思
  • 莱西网站建设/福州seo代理商
  • 网站上的定位功能如何实现的/顺德搜索seo网络推广
  • 微信网站制作软件/十大永久免费的软件下载
  • 晏阳初乡村建设网站/一站式网络营销