当前位置: 首页 > news >正文

做网站需要什么专业方向的员工/济南网站优化排名推广

做网站需要什么专业方向的员工,济南网站优化排名推广,南通网站开发招聘,asp做的静态网站卡不卡二分图(Bipartite Graph)是一种特殊的图结构,其顶点可以分成两个互不相交的集合,使得每条边的两个顶点分别属于这两个集合。二分图在匹配问题(如任务分配、婚姻匹配)和网络流算法中有重要应用。 核心概念 …

二分图(Bipartite Graph)是一种特殊的图结构,其顶点可以分成两个互不相交的集合,使得每条边的两个顶点分别属于这两个集合。二分图在匹配问题(如任务分配、婚姻匹配)和网络流算法中有重要应用。


核心概念

  • 定义:图 ( G = (V, E) ) 的顶点集 ( V ) 可划分为两个不相交的子集 ( U ) 和 ( V ),使得每条边的两个端点分别属于 ( U ) 和 ( V )。
  • 特性
    • 图中不包含奇数长度的环
    • 可以用颜色标记法(如红蓝染色)验证是否为二分图。

检测二分图的算法

通过颜色标记法(DFS/BFS遍历染色)判断图是否满足二分性:

算法步骤
  1. 选择一个起始顶点,标记为颜色1(如红色)。
  2. 遍历其所有相邻顶点,标记为颜色2(如蓝色)。
  3. 递归或迭代处理相邻顶点,若发现相邻顶点颜色冲突(相同颜色),则图不是二分图。
  4. 对所有未访问的连通分量重复此过程。

C++ 模板代码(基于邻接表的DFS实现)

#include <vector>
#include <queue> // 若用BFS需包含此头文件using namespace std;class Solution {
public:bool isBipartite(vector<vector<int>>& graph) {int n = graph.size();vector<int> color(n, -1); // -1表示未染色,0和1表示两种颜色for (int i = 0; i < n; i++) {if (color[i] == -1) { // 处理每个连通分量if (!dfs(graph, color, i, 0)) return false;// 若用BFS:if (!bfs(graph, color, i)) return false;}}return true;}private:// DFS实现bool dfs(vector<vector<int>>& graph, vector<int>& color, int node, int current_color) {if (color[node] != -1) {return color[node] == current_color; // 检查颜色是否冲突}color[node] = current_color;for (int neighbor : graph[node]) {if (!dfs(graph, color, neighbor, 1 - current_color)) return false;}return true;}// BFS实现bool bfs(vector<vector<int>>& graph, vector<int>& color, int start) {queue<int> q;q.push(start);color[start] = 0; // 初始颜色为0while (!q.empty()) {int node = q.front();q.pop();for (int neighbor : graph[node]) {if (color[neighbor] == -1) { // 未染色color[neighbor] = 1 - color[node]; // 染相反颜色q.push(neighbor);} else if (color[neighbor] == color[node]) { // 颜色冲突return false;}}}return true;}
};

代码解释

  • 邻接表graph 是邻接表形式,graph[i] 表示顶点 i 的邻居列表。
  • 颜色数组color 记录每个顶点的颜色(-1未染色,0和1为两种颜色)。
  • DFS/BFS
    • DFS递归染色,若发现相邻顶点颜色相同则返回 false
    • BFS通过队列逐层染色,遇到冲突立即终止。

应用场景

  1. 匹配问题:如匈牙利算法求二分图的最大匹配。
  2. 任务调度:将任务和资源分为两组,边表示可分配关系。
  3. 广告推荐:用户和广告分为两组,边表示用户对广告的兴趣。

关键点总结

  • 时间复杂度:O(V + E),每个顶点和边被访问一次。
  • 空间复杂度:O(V),用于存储颜色和递归栈(DFS)或队列(BFS)。
  • 非连通图处理:需检查所有连通分量。
  • 奇数环判定:若存在奇数长度的环,则不是二分图。

通过颜色标记法,可以高效判断图是否为二分图,并进一步用于解决更复杂的匹配和分配问题。

http://www.whsansanxincailiao.cn/news/31997964.html

相关文章:

  • 一个可以用来做测试的网站/semi final
  • 网站制作技巧017/智能搜索引擎
  • 360免费建站李梦/系统优化助手
  • 咸宁市做网站/广州网络推广外包
  • 制作网站需要多少时间表/化妆培训
  • 外贸网站如何做推广怎么样/免费下载百度seo
  • 注册德国网站域名/推广普通话的宣传标语
  • 内蒙古电子商务网站/网站seo具体怎么做?
  • 做特卖的网站爱库存/网络营销策划书封面
  • 玉树网站建设/wap网站html5
  • 网页设计 参考网站/谷歌推广
  • 网站建设页面/石家庄百度推广排名优化
  • 辽宁建设安装集团有限公司网站/西安 做网站
  • 给女友做的网站 源码/爱站权重查询
  • 做网站的叫什么思耐/关键词搜索排名公司
  • 用jq和ajax做能登陆注册的一个网站/设计师经常用的网站
  • 兰州做网站企业/网络推广工作好干吗
  • 网站建设学习资料/如何做百度免费推广
  • 山东省建设工程信息网官网/seo外链工具源码
  • 石家庄企业商城版网站建设/百度关键词搜索工具
  • 域名注册官网免费/上海seo优化公司
  • 网站建设项目明细/独立站seo优化
  • 网站集约化建设管理方案/企业qq
  • 网站建设提议/推广项目网站
  • 做网站的收益来源/百度一下首页网页手机版
  • 营销型网站建设网络推广/西安seo整站优化
  • 138ip地址查询网站/sem管理工具
  • 蚌埠市建设银行官方网站/长沙靠谱的关键词优化
  • 化妆品网站设计/一个新品牌怎样营销推广
  • 手机网站开发周期/网站优化排名易下拉系统